Archive for the 'National Security' Category

NRC Report: A National Strategy for Advancing Climate Modeling

Tuesday, September 18th, 2012

New Report: A National Strategy for Advancing Climate Modeling

In late 2010 and 2011, I was writing about organizing U.S. climate modeling. I combined and posted some of the WU blogs on as Something New in the Past Decade? Organizing U.S. Climate Modeling. I want to revisit those issues in light of the release of a National Academy of Sciences Report, A National Strategy for Advancing Climate Modeling (2012).

I am a co-author of this Academy report. In this blog, I am writing not in my role as a co-author, but from my personal perspective. This blog fits in with many of the themes I have written about in the last few years.

First, I want to explain the role of the National Academy of Sciences. The Academy is a private, not-for-profit organization created by President Abraham Lincoln at the height of the Civil War. Lincoln and others at the time realized the importance of science and technology to the United States and wanted a way to get independent advice on issues important to policy. Almost 150 years later, this importance is greater, but the role of science is an increasingly controversial political issue – especially when scientific investigation comes into conflict with how we might want to believe and to act. (see, here or edited here ) So one role of the National Academy is independent review – a role that is at the heart of the scientific method and the culture of scientific practice.

Second, how does the Academy decide what to write about? The Academy serves as adviser to the government, and so organizations within the government ask the Academy to evaluate a specific set of questions or issues surrounding a body of science-based knowledge about a particular subject. Often, as in this report, there is a forward-looking aspect of the problem, such as an outline for a strategy. One example of a past report is an analysis President George W. Bush requested soon after his inauguration, Climate Change Science: An Analysis of Some Key Questions. This report is famous, partly, because it took one-month from start to finish. It found that the science of climate change was robust. In June 2001, President Bush gave a speech noting, “Climate change, with its potential to impact every corner of the world, is an issue that must be addressed by the world.” (see speech)

The current report on modeling strategy had many sponsors, notably among them the U.S. Intelligence community, a user not a builder of climate models. An early talk to the writing panel was given by Rear Admiral David Titley (Titley talks about climate and national security). In his presentation, he highlighted numerous concerns of the U.S. military, ranging from patrolling an open and disputed Arctic Ocean to threats of rising sea level to billions of dollars in assets. Other issues of national security are related to the stability of nations, the access to resources, and the volatility of commodity markets. A basic question to the panel is on the improvement of predictive skill, to address questions such as, when will we have to rebuild the dry-dock in Newport News, Virginia, and how high will it have to be?

Next, how does a panel like this actually work? The National Research Council is the operational part of the Academy. If you look on the Policies and Procedures link, you will see its rules of operations on, say, conflict of interest. The Academy selects a chair and a panel to answer the sponsor’s questions from a broad range of experience and points of view. Practically, members of the panel are assigned as lead authors on some chapters, secondary authors on other chapters, and reviewers and deliberators on the entire document. In addition to the panel, the Academy assigns staff members to manage the integration of the document as well as to assure the document is written according to Academy protocols. The staff is attentive to moving the document away from personal points of view towards a document that represents the collective view of the panel. That’s the process.

In this report I wrote history – the first draft of Chapter 2, Lessons from Previous Reports on Climate Modeling. Also, having been a co-author on some of those earlier reports, I provided continuity. For this blog, I am going to write from the perspective of someone who has advocated the need for our community to address a set of important organizational challenges. Or given a more than 20-year history of repeated recommendations and a series of Academy reports that re-identified the same problems, as stated in Chapter 2, “A challenge, therefore, to the current committee is how to disrupt the inertia of the U.S. climate science enterprise: going forward, what do we do differently?”

Because of the disruptive consequences of global warming, the scientific study of climate change has, long ago, moved out of the domain of curious scientists driven to explain the world around them. Climate change requires more than interpretation and guidance in order to be relevant to policy. Stated differently, to be directly usable by society, there is a requirement for scientific investigation focused on specific questions or classes of problems. Addressing these problems requires the use of complex software systems, multidisciplinary scientific information, rigorous and transparent evaluation, and interpretation of the knowledge produced and its uncertainty. Therefore, addressing these problems requires the combined efforts of many individuals from several professional backgrounds. There needs to be a process of planning, coordination, and execution.

We need, therefore, to coordinate activities that are, traditionally, scientific, computational, and organizational. My experience as a manager of scientific efforts is that organizational coordination is far more difficult than the challenges of computational and scientific coordination. Standing alone, coordination of computational and scientific efforts is stunningly difficult. Therefore, the new, perhaps overarching, recommendations of this report are focused on ideas that the committee viewed as helping to advance coordination, integration, or synthesis.

One of the report’s overall recommendations is “to evolve” towards a national software infrastructure for climate modeling. I think the word “evolve” is important because the reports from a decade ago also recommended software and information system infrastructure. In fact, following those reports, there has been investment and progress, both substantial, in the development of infrastructure. This is documented in the report, with the recognition that the organizational achievements are as notable as the technical achievements. Throughout the report, there are calls to build upon these successes, to utilize the communities that have made the progress of the past decade. To quote, “The Committee recommends a community-based design and implementation process for achieving a national common software infrastructure. While this goal has risks, costs, and institutional hurdles, the Committee believes they are far outweighed by its benefits.”

Another major recommendation is the formation of a modeling summit to promote “tighter coordination and more consistent evaluation” of climate models. This, to me, is perhaps the most novel and most important recommendation. Why? Previous reports have struggled with organizational issues and have made recommendations about re-organizing government agencies or re-focusing governmental organizations. At the same time earlier reports, as well as this report, express reservations about centralization and bureaucratic structures. What this recommendation recognizes is the need for a community-based organization that needs to find its niche within the federal agency structure, the interagency organizations, and the growing community of users. It recognizes the value of increased community-based planning and, hopefully, execution. And it, once again, recognizes the progress of the past decade of community building.

The next key recommendation is to “nurture a unified weather-climate modeling effort that better exploits the synergies between weather forecasting, data assimilation, and climate modeling.” This subject, too, has been flirted with in previous reports, and it is a recommendation that is more controversial than one might imagine. These two communities, weather and climate, have come to the modeling problem from different perspectives. Their practices of science have some distinct differences. There is also in the United States an idea held by many that weather forecasting is “operational,” and that “operational” comes at the expense of “science.” This recommendation from the Academy panel is based on the facts that 1) “operational” does not have to come at the expense of “science,” and 2) rationalization or unification of the different practices of science come with the benefit of more robust science-based products.

The final overarching recommendation is about the development of a new type of professional, the climate interpreter. This recommendation follows from other Academy reports and a growing body of research into the barriers of the use of climate information by scientists and practitioners who need climate information in their research, applications, and decision making. This recommendation explicitly recognizes the importance of formalizing the interfaces between climate modeling, more broadly climate science, and the usability of climate information by society as a whole.

These new recommendations are supported by a series of recommendations, which are, again, focused on pulling together the community: the scientific efforts, the computational efforts, and the interfaces to society as a whole. These supporting recommendations focus on continuation and strengthening of important activities that are of especial importance.

I want to also point out a few things that the report is not. It is not a list of important scientific questions. Many such lists have been made, and they are often the natural product of a group of scientists thinking about strategy. It is not a recommendation that if the government reorganizes in some way or simply provides more money, then we will address all needed climate services. We have no way to reorganize the government, and we are smart enough to know the challenges of money. And, finally, this report is not a call to centralize through reorganization. As a government manager, for years I studied centralized organizations, federations, and anarchist groups. I feel that centralization in a field and environment like ours is, primarily, a process that leads to increased risk. I feel that federated, community-based responsibility is the best path to assure success. It is also the most difficult.

As a final comment: I am a co-author of the report writing a blog that is my point of view. If I were asked to interpret the report in a strategic sense for a program manager, this is where I would start. One of the lessons I have learned is that this report is now in the hands of the public. Some people will interpret the report to support their agendas, sometimes their prejudices. I looked at past reports that I have been involved with, and I have seen recommendations cherry-picked for both good and bad reasons. The message of this report is synthesis, integration, and coordination. For the report’s message to become reality, those with the power to act and to implement need to focus on synthesis. We need to go forward more as a whole than as a thousand points of expertise brought together in grand exercises of climate-science assessment.


Something New in the Past Decade? Organizing U.S. Climate Modeling

Sunday, February 6th, 2011

Something New in the Past Decade? Organizing U.S. Climate Modeling

Update: The report referred to in the original blog was released on September 7, 2012: National Academy of Sciences Report, A National Strategy for Advancing Climate Modeling (2012).

In 1999 I was part of a small group of people that was asked to write a report on climate modeling and supercomputing, and in particular, what needed to be done to make U.S. Federal efforts more effective. The report was published in 2000, and it is still available on line at the USGCRP website. (U.S. Global Change Research Program) Now in 2011 a panel is being convened to write about “A National Strategy for Advancing Climate Modeling.” (link) In this entry I want to return to the older report and think about what is different from 10 years ago.

When my co-authors and I wrote this report, we presented the results to several panels of distinguished people. Over the years, people have continued to send comments to me about the report. I contend that this report was different from a lot of other reports. I think it is safe to say that the authors of the report were chosen because of a willingness to look beyond their home agencies. Also we included as an author a sociologist who is expert in organizations and how to make organizations function.

The report was motivated by what I might call discontent by some of those responsible for oversight of Federal climate expenditures. There was in the late 1990s a (highly politicized) national assessment of climate change. Much of the information for model predictions came from Canadian and British models. This occurred despite the fact that not only were their several U.S. modeling efforts, but the U.S. spent (far) more money on modeling than these other countries. A natural question, what was wrong with the U.S. efforts?

In the report, we concluded some things that some of our colleagues considered radical. We focused much of our discussion on issues of management of scientific programs and organizations, and concluded that the culture and practice of science in the U.S. was, fundamentally, fragmenting. We even went as far as to state that “Without addressing these management issues, providing additional funds to the existing programs will not be effective in the development of the Climate Service.” (Not sure that statement helped my career and reminding people of that might take me right through retirement.)

In the spirit of being conversational – there was press coverage of the report at the time, and most of that press coverage was in publications that focused on computing and supercomputing. We authors quickly regretted this emphasis on computing, and the document being cast as a “computing report.” True we did say that U.S. policy on supercomputing and our ability or inability to import supercomputers impacted, negatively, the competitiveness of U.S. climate and weather modeling. But we did not feel that our primary message was about computing.

Our primary message was meant to be about fragmentation and distribution of resources that could be brought together to address integrated problems such as climate assessments. The U.S. scientific culture values highly innovative, curiosity driven research. This is often best achieved through the efforts of individual scientists and small groups. This individuality is exciting, and it is how scientists get promoted. It develops a culture of expertise. Our point in the document was that there needed to be another path of scientific practice, one that valued the integration of all of the pieces and the production of validated, science-based products. We called this “product-driven” research. We could have as easily called it applied research.

So the question comes forward, how do we value product-driven research? It’s hard. In the U.S. we have this idea that if we generate products from our research, then that is in some way damaging to innovation and the generation of the “best science.” The “science” gets compromised. The word “operational” is invoked, and there is a prejudice that operational systems, ones that produce products on a schedule, must be less than they can and should be scientifically. Hence, anytime there is a push towards product-driven research, there is both individual and institutional resistance that rises to defeat the push. This makes sense, because it is asking people to change, and it is asking them to do something for which they cite plenty of evidence that it will assure less successful careers.

We have institutions where people are expected to work on community models but, at least historically, their performance plans make no mention of community activities. I have worked on documents for U.S. agencies as recently as 2010 where I tried to write that we were building climate models that could be used in energy planning, policy decisions, and by society to anticipate and plan for climate change. This, however, was deemed as contrary to the true agency mission of fundamental research for the benefit of the nation. People are hired to do multi-disciplinary research, but they are promoted or given tenure for their individual accomplishments in specific disciplines. Individuals are recognized for novel breakthroughs, programs are recognized for funding novel breakthroughs, and agencies are recognized for having programs that fund novel breakthroughs.

So in the final presentations we made of the 2000 Report we drew pictures like the one below. We put in arrows and money signs and suggested lines of management, and argued that there needed to be internalized incentive structures. (For those with energy, the article continues below the figure!)

Figure 1. An organization designed to deliver product-driven research (maybe what we should do).

What I have stated above is that the fragmented way we approach the practice of science is valued because it encourages innovation and fundamental discovery. One the other hand, it stands in way of the cross-disciplinary unifying branch of science. As climate scientists we have a need to perform assessments, and assessments are, by definition, cross-disciplinary unifying science. Therefore, to align our assets and efforts to perform assessments comes into basic conflict with not only our fragmented scientists and science organizations, but with the underlying culture of our practice of science.

The fragmentation extends beyond the practice of research. There are separate organizations responsible for high-performance computing, and they have their needs to demonstrate breakthroughs. Such a goal might be the greatest number of calculations in a second. Goals like that are achieved with special problems and computer codes, not with messy real problems like weather prediction and climate modeling. Computers are often provided for a set of grand challenge problems. Another point in the report was that the climate models and computational platforms needed to co-evolve; they needed to be managed together.

And if computers and models need to co-evolve, then there needs to be balanced development of software and data systems and analysis capabilities. In fact, in the 2000 report, we identified the greatest deficiency in federal investment being in software infrastructure. Since 2000, there has been significant development of software and data systems and analysis capabilities.

Perhaps then, there is some impact from the report, with more balance in the funding of all of the pieces that are needed in a robust climate program. The expenditures, however, are still fragmented, and the developments have a tendency to be independent. Even given the recognition that these expenditures are essential for a robust climate program, there is always a fight to maintain the expenditures as they are viewed to take away resources from “the science,” from research, from discovery. The program managers and software engineers and the data system professionals have to compete with the high profile breakthroughs of research and high-performance computing.

I paint here a fundamental characteristic of our practice of science. It is deeply engrained, and in many ways, it is highly successful. Therefore, approaches to provide assessments, to address cross-disciplinary unifying science, to develop climate services – these approaches need to build from this practice and from these successes. This is a challenge to agencies who like to think in terms of re-organizations, institutions, and programatic collocation of needed assets. Reorganization does not address the basic fact that the underlying structure is fundamentally fragmenting, that there is perceived value in that fragmentation, and that there is investment in that fragmentation.

In the 2000 report we described the type of organization that we thought was needed to address the issues of climate modeling, high-performance computing, and climate services. Today, I would nuance or refine that recommendation, based on emergence of community-based approaches to complex problem solving. A new type of organization is needed, one with stable, balanced, coordinated, product-focused investments in all of the elements necessary for science-based climate products. Essential in this organization is giving value to those who perform cross-disciplinary unifying scientific research to address complex problems. This is not reorganization or restructuring; this is not merging agencies and programs; this is focused, mindful development of a capability to achieve a specific, needed goal.



Wednesday, July 11th, 2007


In an earlier post on this topic, I discussed the security implications of our growing national and global dependence on oil and the relationship between policies to curb oil consumption and policies to mitigate climate change. In this post, I’ll discuss how climate change itself quickly became a national security priority worthy of Congressional attention.


The story begins in February of this year, when the Intergovernmental Panel on Climate Change (IPCC) released a summary report on impacts, adaptation and vulnerability (part of the second volume of the Fourth Assessment Report) in which they concluded “with high confidence that anthropogenic warming over the last three decades has had a discernable influence on many physical and biological systems.” (more…)


Monday, July 9th, 2007


This is the first of a two-part post in which I will revisit the connection between policies to mitigate climate change and policies to enhance national security. In the first post (today), I will consider the security implications of our increasing national and global dependence on oil and will discuss several climate and energy security policies in this context. In a follow-up post later in the week, I will turn to the security implications of climate change itself.


In the U.S., our conflicted relationship with oil is apparent each time we stop at a gas station. Collectively, it’s hard to imagine anything – with the obvious exception of food and water – so essential to our way of life. Yet, with gas prices firmly above three dollars per gallon, income spent on gasoline often does not feel like money well spent.


Add to this the fact that gas prices can be extremely unpredictable – subject to change based on the whims of OPEC, the paths of tropical storms, demand in China, the integrity of pipelines and speculation from Wall Street. Volatility is obviously troubling for individual consumers, but it is also troubling for those worried about the health of the economy as a whole. (more…)


Tuesday, May 22nd, 2007

Is climate change a national security threat? A month ago, a panel of retired military leaders said that it was. Two weeks ago, the Congress agreed and asked for a National Intelligence Estimate to be made of the national security implications of climate change. The Director of National Intelligence, Mike McConnell, endorsed this suggestion. So have environmentalists. Even Al Gore, when testifying before the Senate on climate change last March, used war analogies to provoke the Senate into action.

Recalling the Black Hawk Down incident in Somalia, Congressman Edward Markey, head of the new Select Committee on Energy Independence and Global Warming, told the Congress last week:

“Drought caused famine. Famine caused food relief. Food relief caused warlords to fight over it. The warlords’ fighting caused the U.S. to intervene, and 19 U.S. fighting men were killed.” (more…)

E-mail It